organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Chloromethyl-1,3-dimethyl-1Hpyrazole

Guigiu Yang,^a* Hongcai Xu,^b Huibin Yang^c and Haibo Yu^c

^aShenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, ^bPharmaceutical Division, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and ^cAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China

Correspondence e-mail: yangguiqiu@gmail.com

Received 29 September 2010; accepted 21 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 15.3.

The pyazole ring in the title compound, $C_6H_9ClN_2$, is almost planar (r.m.s. deviation = 0.003 Å). In the crystal, molecules are linked by $C-H \cdots N$ interactions, forming [100] chains.

Related literature

For a related structure, see: Baldy et al. (1985).

Experimental

Crystal data

β

C ₆ H ₉ ClN ₂	$\gamma = 85.725 \ (2)^{\circ}$
$M_r = 144.60$	V = 370.71 (6) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 6.5210 (7) Å	Mo $K\alpha$ radiation
b = 7.3111 (7) Å	$\mu = 0.43 \text{ mm}^{-1}$
c = 7.9854 (8) Å	T = 296 K
$\alpha = 88.383 \ (1)^{\circ}$	$0.28 \times 0.22 \times 0.20$ mm
$\beta = 77.563 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2001)	
$T_{\min} = 0.890, \ T_{\max} = 0.919$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	85 parameters
$vR(F^2) = 0.105$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
304 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

1906 measured reflections

 $R_{\rm int} = 0.011$

1304 independent reflections

1135 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1B\cdots N2^{i}$	0.97	2.50	3.446 (3)	164

Symmetry code: (i) x + 1, y, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5664).

References

Baldy, A., Elguero, J., Fawe, R., Pierrot, M. & Vincent, E. J. (1985). J. Am. Chem. Soc. 107, 5290-5291.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o3006 [doi:10.1107/S1600536810042844]

5-Chloromethyl-1,3-dimethyl-1*H*-pyrazole

G. Yang, H. Xu, H. Yang and H. Yu

Experimental

N,*N*-Dimethylformamide(0.96 g, 11 mmol) was add to a 100 ml three necked-bottle, and phosphoryl trichloride(6.13 g, 40 mmol) was added slowly under ice-bath, then added (1,3-dimethyl-1*H*-pyrazole-5-yl)methanol(1.26 g, 10 mmol) at room temperature in portions. The reaction mixture was heated to reflux and reacted for 6 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/5). The title product compound was obtained as a white solid (0.36 g, 22%) and recrystallised from methylene chloride to yield colourless blocks of (I).

Anal. Calcd for C₆H₉N₂: C, 49.84; H, 6.27; N, 19.37. Found: C, 49.81; H, 6.30; N, 19.40. ¹H NMR(CDCl3): 2.22(s,3*H*, CH₃), 3.84 (s,3*H*, N—CH₃), 4.53(s, 2H, CH₂), 6.04 (s, 1H, Pyrazole-H).

Refinement

Although all H atoms were visible in difference maps, they werefinally placed in geometrically calculated positions, with C-Hdistances in the range 0.93–0.96Å and N—H distances of 0.86 Å, and included in the final refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C, N)$ and $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.

5-Chloromethyl-1,3-dimethyl-1H-pyrazole

Crystal data $C_6H_9CIN_2$ $M_r = 144.60$ Triclinic, *P*T Hall symbol: -P 1 a = 6.5210 (7) Å b = 7.3111 (7) Å c = 7.9854 (8) Å

Z = 2 F(000) = 152 $D_x = 1.295 \text{ Mg m}^{-3}$ Melting point = 361–364 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1109 reflections $\theta = 2.6-26.7^{\circ}$

$\alpha = 88.383 \ (1)^{\circ}$	$\mu = 0.43 \text{ mm}^{-1}$
$\beta = 77.563 \ (2)^{\circ}$	T = 296 K
$\gamma = 85.725 \ (2)^{\circ}$	BLOCK, colorless
$V = 370.71 (6) \text{ Å}^3$	$0.28\times0.22\times0.20~mm$

Data collection

Bruker SMART CCD diffractometer	1304 independent reflections
Radiation source: fine-focus sealed tube	1135 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.011$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -7 \rightarrow 4$
$T_{\min} = 0.890, T_{\max} = 0.919$	$k = -7 \rightarrow 8$
1906 measured reflections	$l = -9 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0513P)^{2} + 0.1537P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
1304 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
85 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Entirection as officients 0.42 (2)

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.43 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

y

x

Ζ

 $U_{iso}*/U_{eq}$

Cl1	1.05348 (10)	0.89562 (8)	0.28229 (8)	0.0675 (3)
N1	0.7203 (2)	0.6178 (2)	0.1574 (2)	0.0414 (4)
N2	0.5716 (3)	0.4983 (2)	0.2188 (2)	0.0450 (4)
C1	1.0872 (3)	0.6828 (3)	0.1664 (3)	0.0509 (5)
H1A	1.1141	0.7093	0.0443	0.061*
H1B	1.2085	0.6102	0.1904	0.061*
C2	0.8994 (3)	0.5757 (3)	0.2144 (2)	0.0408 (5)
C3	0.8653 (3)	0.4224 (3)	0.3159 (3)	0.0453 (5)
H3	0.9593	0.3600	0.3737	0.054*
C4	0.6600 (3)	0.3784 (3)	0.3150 (2)	0.0435 (5)
C5	0.5411 (4)	0.2246 (3)	0.4043 (3)	0.0586 (6)
H5A	0.3958	0.2440	0.3976	0.088*
H5B	0.5518	0.2198	0.5224	0.088*
H5C	0.5991	0.1110	0.3504	0.088*
C6	0.6713 (4)	0.7699 (3)	0.0489 (3)	0.0579 (6)
H6A	0.5882	0.8648	0.1187	0.087*
H6B	0.5937	0.7284	-0.0304	0.087*
H6C	0.7997	0.8172	-0.0134	0.087*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0728 (5)	0.0529 (4)	0.0782 (5)	-0.0180 (3)	-0.0135 (3)	-0.0100 (3)
N1	0.0373 (9)	0.0436 (9)	0.0435 (9)	-0.0058 (7)	-0.0085 (7)	0.0046 (7)
N2	0.0381 (9)	0.0480 (10)	0.0493 (9)	-0.0092 (7)	-0.0085 (7)	0.0007 (7)
C1	0.0387 (11)	0.0513 (12)	0.0616 (13)	-0.0059 (9)	-0.0065 (9)	-0.0068 (10)
C2	0.0346 (10)	0.0425 (10)	0.0449 (10)	-0.0009 (8)	-0.0073 (8)	-0.0066 (8)
C3	0.0455 (11)	0.0434 (11)	0.0487 (11)	0.0015 (9)	-0.0157 (9)	-0.0001 (8)
C4	0.0467 (11)	0.0402 (10)	0.0417 (10)	-0.0053 (8)	-0.0044 (8)	-0.0028 (8)
C5	0.0652 (15)	0.0492 (12)	0.0589 (13)	-0.0133 (11)	-0.0054 (11)	0.0036 (10)
C6	0.0584 (14)	0.0556 (13)	0.0635 (14)	-0.0074 (11)	-0.0219 (11)	0.0140 (11)

Geometric parameters (Å, °)

1.808 (2)	C3—C4	1.401 (3)
1.354 (2)	С3—Н3	0.9300
1.357 (2)	C4—C5	1.490 (3)
1.449 (3)	C5—H5A	0.9600
1.330 (3)	С5—Н5В	0.9600
1.478 (3)	C5—H5C	0.9600
0.9700	С6—Н6А	0.9600
0.9700	С6—Н6В	0.9600
1.368 (3)	С6—Н6С	0.9600
111.77 (16)	N2—C4—C3	110.45 (17)
128.92 (17)	N2-C4-C5	120.51 (19)
119.29 (16)	C3—C4—C5	129.03 (19)
105.36 (15)	С4—С5—Н5А	109.5
111.73 (14)	C4—C5—H5B	109.5
	1.808 (2) 1.354 (2) 1.357 (2) 1.449 (3) 1.330 (3) 1.478 (3) 0.9700 0.9700 1.368 (3) 111.77 (16) 128.92 (17) 119.29 (16) 105.36 (15) 111.73 (14)	1.808 (2) $C3-C4$ $1.354 (2)$ $C3-H3$ $1.357 (2)$ $C4-C5$ $1.449 (3)$ $C5-H5A$ $1.330 (3)$ $C5-H5B$ $1.478 (3)$ $C5-H5C$ 0.9700 $C6-H6A$ 0.9700 $C6-H6B$ $1.368 (3)$ $C6-H6C$ $111.77 (16)$ $N2-C4-C3$ $128.92 (17)$ $N2-C4-C5$ $119.29 (16)$ $C3-C4-C5$ $105.36 (15)$ $C4-C5-H5A$ $111.73 (14)$ $C4-C5-H5B$

supplementary materials

C2—C1—H1A	109.3	H5A—C5—H5B	109.5
Cl1—C1—H1A	109.3	С4—С5—Н5С	109.5
C2—C1—H1B	109.3	H5A—C5—H5C	109.5
Cl1—C1—H1B	109.3	H5B—C5—H5C	109.5
H1A—C1—H1B	107.9	N1—C6—H6A	109.5
N1—C2—C3	106.40 (17)	N1—C6—H6B	109.5
N1—C2—C1	123.08 (18)	H6A—C6—H6B	109.5
C3—C2—C1	130.52 (19)	N1—C6—H6C	109.5
C2—C3—C4	106.02 (17)	Н6А—С6—Н6С	109.5
С2—С3—Н3	127.0	H6B—C6—H6C	109.5
С4—С3—Н3	127.0		
C2—N1—N2—C4	-0.5 (2)	Cl1—C1—C2—C3	-104.4 (2)
C6—N1—N2—C4	-178.81 (18)	N1—C2—C3—C4	-0.1 (2)
N2—N1—C2—C3	0.3 (2)	C1—C2—C3—C4	-179.3 (2)
C6—N1—C2—C3	178.48 (19)	N1—N2—C4—C3	0.4 (2)
N2—N1—C2—C1	179.62 (17)	N1—N2—C4—C5	-179.94 (17)
C6—N1—C2—C1	-2.2 (3)	C2—C3—C4—N2	-0.2 (2)
Cl1—C1—C2—N1	76.5 (2)	C2—C3—C4—C5	-179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C1—H1B···N2 ⁱ	0.97	2.50	3.446 (3)	164
Symmetry codes: (i) $x+1$, y , z .				

